Potential muscle function during the swing phase of stroke gait.

نویسندگان

  • Debra G George-Reichley
  • Jill S Higginson
چکیده

The understanding of individual muscle impairments that affect swing phase in stroke gait will lead to better rehabilitation strategies for this population. We used induced acceleration analysis to evaluate the potential each muscle has to accelerate the hip and knee joints of the swing limb, using kinematics from three stroke subjects and five healthy subjects. To determine the influence of altered limb position on muscle function, we augmented hip extension by 10 degrees in swing phase for all subjects. We found that in early swing, healthy subjects had greater potential to accelerate the knee into flexion than stroke subjects, whereas stroke subjects had greater potential to accelerate the hip into flexion. Perturbing the hip flexion angle into greater extension increased the potential of biarticular muscles to flex the knee in swing phase. The potential of muscles to improve swing phase dynamics depends on the initial posture of the limb and highlights the importance of subject-specific evaluations in the design of appropriate therapeutic interventions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Evaluation of an Articulated Ankle Foot Orthosis with Plantarflexion Resistance on the Gait: a Case Series of 2 Patients with Hemiplegia

Ankle-foot orthoses (AFOs) have been described to have positive effects on the gait biomechanics in stroke patients. The plantarflexion resistance of an AFO is considered important for hemiplegic patients, but the evidence is still limited. The purpose of this case series was to design and evaluate the immediate effect of an articulated AFO on kinematics and kinetics of lower-limb joints in str...

متن کامل

Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait.

BACKGROUND AND PURPOSE Functional electrical stimulation (FES) is a popular poststroke gait rehabilitation intervention. Although stroke causes multijoint gait deficits, FES is commonly used only for the correction of swing-phase foot drop. Ankle plantarflexor muscles play an important role during gait. The aim of the current study was to test the immediate effects of delivering FES to both ank...

متن کامل

اثر قطع عضو همیپلویکتومی بر کینماتیک و نیروی تولیدی عضلات اندام تحتانی حین راه رفتن با پروتز کانادین؛ گزارش موردی

Objective Hemipelvectomy amputation is a surgical procedure in which the lower limb and a portion of pelvic are removed. There are a few studies on the performance of this group of patients while walking. The aim of this paper was to evaluate the effect of hemipelvectomy amputation on kinematics and muscle force generation of the lower limb while walking with Canadian prosthesis. Materials & M...

متن کامل

FNS For Gait Component Restoration Post Stroke

Purpose. A multi-channel functional neuromuscular stimulation (FNS) system using intramuscular (IM) electrodes (FNS-IM) and an externally worn stimulator were tested for suitability in patients with stroke; feasibility in acute stroke; and efficacy in restoration of gait in chronic stroke. Methods. First, mechanical and physiological performance and subject response were quantified for 124 elec...

متن کامل

Soleus stretch reflex inhibition in the early swing phase of gait using deep peroneal nerve stimulation in spastic stroke participants.

Objectives. To investigate the feasibility of inhibiting the stretch reflex of the soleus muscle by a conditioning stimulus applied to the deep peroneal nerve in spastic stroke participants during the early swing phase of gait. Materials and Methods. This study investigated the effect of an electrical conditioning stimulus applied to the deep peroneal nerve on the magnitude at the peak of the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied biomechanics

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2010